Peer-reviewed work in Evolutionary Computation, Artificial Life, LLM-based Systems, and Multi-Agent Learning
Preprints & In Submission (2025)
Le, N. H., Erikson, P., Zhang, Y., Levin, M., Bongard, J.
ZapGPT: Free-form Language Prompting for Simulated Cellular Control.
In submission to Artificial Life, MIT Press, 2025.
[Code][Video]
Le, N. H., Erikson, P., Zhang, Y., Levin, M., Bongard, J.
Giving Simulated Cells a Voice: Evolving Prompt-to-Intervention Models for Cellular Control.
To appear in GECCO Companion Proceedings, ACM, 2025.
[PDF][Video]
Journal Articles
Le, N. H., Levin, M., Watson, R., Bongard, J., Buckley, C.
Emergent Collective Reproduction via Evolving Neuronal Flocks.Northeast Journal of Complex Systems, Vol. 7, No. 2, Article 8, 2025.
[Full Text][Code]
Conference Papers
Le, N. H., Brabazon, A., O’Neill, M.
Social Learning vs Self-teaching in a Multi-agent Neural Network System.
Applications of Evolutionary Computation, Springer, 2020, pp. 354–368.
Le, N. H.Evolution and Self-teaching in Neural Networks.
GECCO Companion Proceedings, ACM, 2019.
Le, N. H.Evolving Self-taught Neural Networks: The Baldwin Effect and the Emergence of Intelligence.
AISB Symposium on AI & Games, 2019.
Le, N. H., Brabazon, A., O'Neill, M.
Evolutionary Consequences of Learning Strategies in a Dynamic Rugged Landscape.
GECCO Proceedings, ACM, 2019.
Le, N. H., Brabazon, A., O'Neill, M.
How Learning Strategies Can Promote an Evolving Population in Dynamic Environments.
IEEE CEC, 2019.
Le, N. H., Brabazon, A., O'Neill, M.
The Evolution of Self-taught Neural Networks in Multi-agent Environment.
EvoStar Conference, 2019.
Le, N. H., Brabazon, A., O'Neill, M.
How the Baldwin Effect Can Guide Evolution in Dynamic Environments.
TPNC Conference, 2018.
Le, N. H., Brabazon, A., O'Neill, M.
Adaptive Advantage of Learning Strategies: A Study Through Dynamic Landscape.
PPSN XV, 2018.
Le, N. H., Brabazon, A., O'Neill, M.
The Baldwin Effect Reconsidered Through the Prism of Social Learning.
IEEE CEC, 2018.
Genetic Programming & Representation Learning
Le, N. H., Bongard, J.
Decoupling Representation and Learning in Genetic Programming: The LaSER Approach.
To appear in Genetic Programming Theory and Practice (GPTP), 2025.
[Preprint]
Le, N. H., O'Neill, M., Brabazon, A.
Social Grammatical Evolution with Imitation Learning for Real-Valued Function Estimation.
IEEE CEC, 2017.
Le, N. H., Xuan, H. N., Brabazon, A., Thi, T. P.
Complexity Measures in Genetic Programming Learning: A Brief Review.
IEEE CEC, 2016.
Reviewer Service
Cognitive Science (Wiley)
Artificial Life Journal (MIT Press)
IEEE Transactions on Evolutionary Computation
GECCO – Genetic and Evolutionary Computation Conference
IEEE CEC – Congress on Evolutionary Computation
ALIFE – Artificial Life Conference
Invited Talks & Academic Visits
Visiting Speaker, Allen Discovery Center, Tufts University
Talk: Evolutionary Transitions in Individuality and the VitaNova Platform (2024).
[Video]
Visiting Researcher, Beacon Center, Michigan State University (2024)
Visiting Researcher, Simon Levin Lab, Princeton University (2024)